+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

Bridging the power voltage gap

News

DOE’s MERIT program to develop power devices that operate efficiently between 1500 and 50,000V

Today’s power electronics tend to operate at extremes. Charging personal vehicles or storing energy from a commercial solar panel requires low voltages, while high voltages are used for utility-scale projects like wind and solar farms or interconnecting power distribution and transmission systems.

But there is a power electronics gap between 1,500 and 50,000V that is critical to larger-scale renewable energy projects, larger equipment such as wind turbines and larger electric vehicles like trains and vertical-takeoff aircraft.

Scientists at the US Department of Energy’s Oak Ridge National Laboratory are looking for bridge the gap to help the US achieve clean energy goals and expand capacity in an overburdened power grid — without erecting thousands of miles of new transmission lines.

“There are many applications that can fit here, but the technology for that middle space hasn’t been proven to be reliable or cost effective,” said Prasad Kandula (pictured above), leader of ORNL’s Grid Systems Hardware group.

To help meet the need, ORNL will be guiding DOE’s new Medium Voltage Resource Integration Technology program, or MERIT, which teams four national labs and five universities to develop devices that operate efficiently in that middle range.

Kandula notes that medium-voltage power electronics have become more affordable and making the switch could reduce the size, weight and volume of a system. “Power conversion using medium-voltage power electronics is expected to be more efficient, in addition to packing more power into a smaller space,” he said.

For example, medium-voltage power electronics could be used to feed electricity from a region with extra supply to a neighboring system struggling to meet demand. This could prevent rolling blackouts, price spikes and activation of polluting backup power plants. In another scenario, medium-voltage power electronics could help convert key portions of the distribution grid from AC to DC, because DC is more efficient at carrying power long distances. This would essentially increase the amount of delivery capacity using the same power lines.

Kandula said medium-voltage power electronics could also enable complete DC operation for projects such as a microgrid with its own solar power and batteries. “Initially a DC ecosystem would most likely be used at isolated systems like a campus,” Kandula said. “The next level might be a distribution feeder of a few miles, like a solar farm at the edge of the grid.”

A DC-only system requires less power conversion equipment and eliminates energy losses that occur during the conversion process. It could make clean energy more efficient and economical, especially as big solar and wind farms are increasingly built far from population centers where electricity demand is concentrated.

Medium-voltage research leadership, capabilities

ORNL researchers have been developing a menu of medium-voltage building blocks, such as converter modules, specialised magnetics, and protection mechanisms that isolate electrical problems.

“With MERIT, we’ll develop building blocks of varying types to increase reliability, then stack multiple blocks to reach higher voltages,” Kandula said. The ability to plug a variety of modules into a larger architecture will make it easier to explore new power applications, from recharging long-haul electric trucks to producing green hydrogen for the steel industry.

This effort builds on the experience and capabilities in ORNL’s Grid Research Integration and Development Center, or GRID-C, where researchers can simulate different architectures, build a converter and test it up to 13,000 volts.

“We are developing a matrix of technology across components that can go into many applications,” said Madhu Chinthavali, head of ORNL’s Energy Systems Integration and Controls Section. “ORNL’s GRID-C is uniquely equipped with the component-building proficiency, test beds and expertise to fully develop and test these power electronics components.”

For MERIT, ORNL will expand existing relationships with utilities to identify medium-voltage needs. This builds on the Power electronics Accelerator Consortium for Electrification, or PACE, initiative that was created in 2022 to increase collaboration among research institutions, power companies and manufacturers. An initiative of DOE’s Office of Electricity, PACE is adding partners to take innovations rapidly from the lab to the electric grid.

Individual labs can join forces with industry to pursue specific advances in medium-voltage power electronics. “The end goal for us is to pick a use case, work with a partner, build a full system, install it, show it operational in the field and show the financial implications,” Kandula said.

Other MERIT research partners include National Renewable Energy Laboratory, Sandia National Laboratories, Pacific Northwest National Laboratory, University of Arkansas, Virginia Polytechnic Institute and State University and Florida State University. The MERIT project is funded under DOE’s Grid Modernisation Initiative through the Grid Modernization Laboratory Consortium.


Amperesand raises $12.45M to transform power grids
Nexperia introduces Energy Balance Calculator
Worksport to use Infineon GaN in portable power product
£11M for University of Bristol WBG/UWBG research centre
UK government to invest £26.8M into semiconductor projects
Onsemi posts record automotive revenue
Qorvo boosts performance in 750V EV designs
VMAX chooses Infineon hybrid power chip
Toshiba adds more 60V P-channel MOSFETs
Bridging the power voltage gap
NSF funds research into Gallium Oxide traction inverters
Wolfspeed reports record design wins in Q2
Infineon and Honda enter collaboration
Power Integrations introduces offline flyback switcher
Diodes Inc launches dual-channel high side switches
Renesas Brings Industry-Leading Performance of RA8 Series MCUs to Motor Control Applications
Littelfuse Launches SM10 Series Varistor: A Breakthrough in Automotive and Electronics Surge Protection
$2.8M award to develop novel grid module
Vitesco to set up factory in Czech Republic
Silvaco joins 'GaN Valley'
Mouser opens alternative energy resource hub
Laser Thermal appoints Angstrom Scientific
Second GaN Systems founder joins QPT
Power Integrations Introduces InnoSwitch5 Offline Flyback Switcher IC
TTI Europe to stock Panjit semiconductors
Navitas and Shinry to work together on NEVs
Sinexcel to use Infineon CoolSiC MOSFETs
AOS announces double-sided cooling DFN package
Infineon and Anker open application centre
Rohm releases compact 600V MOSFETs
Webinar: Sample preparation and TEM imaging techniques for advanced power devices
Researchers develop damage-free etching for gallium oxide

×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
×
Logo
×
Register - Step 1

You may choose to subscribe to the Power Electronics World Magazine, the Power Electronics World Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: